Low-phase quantization error Mach–Zehnder interferometers for high-precision optical neural network training

Author:

Yuan Y.1ORCID,Cheung S.1ORCID,Van Vaerenbergh T.1ORCID,Peng Y.1ORCID,Hu Y.1,Kurczveil G.1ORCID,Huang Z.1,Liang D.1ORCID,Sorin W. V.1ORCID,Xiao X.1ORCID,Fiorentino M.1ORCID,Beausoleil R. G.1ORCID

Affiliation:

1. Hewlett Packard Labs, Hewlett Packard Enterprise , Milpitas, California 95035, USA

Abstract

A Mach–Zehnder interferometer is a basic building block for linear transformations that has been widely applied in optical neural networks. However, its sinusoidal transfer function leads to the inevitable dynamic phase quantization error, which is hard to eliminate through pre-calibration. Here, a strongly overcoupled ring is introduced to compensate for the phase change without adding perceptible loss. Two full-scale linearized Mach–Zehnder interferometers are proposed and experimentally validated to improve the bit precision from 4-bit to 6- and 7-bit, providing ∼3.5× to 6.1× lower phase quantization errors while maintaining the same scalability. The corresponding optical neural networks demonstrate higher training accuracy.

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Reference53 articles.

1. Recent trends in deep learning based natural language processing;IEEE Comput. Intell. Mag.,2018

2. Deep learning for computer vision: A brief review;Comput. Intell. Neurosci.

3. Deep learning-based vehicle behavior prediction for autonomous driving applications: A review;IEEE Trans. Intell. Transp. Syst.,2020

4. D. Wang , A.Khosla, R.Gargeya, H.Irshad, and A. H.Beck, “Deep learning for identifying metastatic breast cancer,” arXiv:1606.05718 (2016).

5. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play;Science,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3