The stability of wakes of floating wind turbines

Author:

Kleine V. G.12ORCID,Franceschini L.34ORCID,Carmo B. S.3ORCID,Hanifi A.1ORCID,Henningson D. S.1ORCID

Affiliation:

1. FLOW Turbulence Lab., Department of Engineering Mechanics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

2. Division of Aeronautical and Aerospace Engineering, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900 São Paulo, Brazil

3. USP University of São Paulo, Escola Politécnica, Department of Mechanical Engineering, Av. Prof. Mello Moraes, 2231, Cidade Universitária, 05508-030 São Paulo, Brazil

4. Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands

Abstract

Floating offshore wind turbines (FOWTs) are subjected to platform motion induced by wind and wave loads. The oscillatory movement trigger vortex instabilities, modifying the wake structure and influencing the flow reaching downstream wind turbines. In this work, the wake of a FOWT is analyzed by means of numerical simulations and a comparison with linear stability theory. Two simplified models based on the stability of vortices are developed for all degrees of freedom of turbine motion. In our numerical simulations, the wind turbine blades are modeled as actuator lines and a spectral-element method with low dispersion and dissipation is employed to study the evolution of the perturbations. The turbine motion excites vortex instability modes predicted by the linear stability of helical vortices. The flow structures that are formed in the non-linear regime are a consequence of the growth of these modes and preserve some of the characteristics that can be explained and predicted by the linear theory. The number of vortices that interact and the growth rate of disturbances are well predicted by a simple stability model of a two-dimensional row of vortices. For all types of motion, the highest growth rate is observed when the frequency of motion is one and a half the frequency of rotation of the turbine that induces the out-of-phase vortex pairing mechanism. For lower frequencies of motion, several vortices coalesce to form large flow structures, which cause the high amplitude of oscillations in the streamwise velocities, which may increase fatigue or induce high amplitude motion on downstream turbines.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Kungliga Tekniska Högskolan

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3