Effects of the hidden errors in the bounce back scheme on the lattice Boltzmann simulation of the turbulent channel flow using the multiple-relaxation-time collision model

Author:

Abstract

In our recent paper [Dong et al., Phys. Fluids 34, 093608 (2022)], it is shown that hidden errors can be introduced by a bounce back scheme at the boundary nodes, due to the fact that it may not be entirely consistent with the Chapman–Enskog approximation of the lattice Boltzmann equation applied to the interior nodes. In this paper, we investigate the effects of these hidden errors on the lattice Boltzmann simulation of the turbulent channel flow with a multiple-relaxation-time (MRT) collision model, extending our previous study using the Bhatnagar–Gross–Krook and two-relaxation-time collision models applied to laminar non-uniform viscous flows. A theoretical framework for identifying the hidden errors in the MRT model is developed, and the hidden errors in two bounce back schemes, namely, the off-wall and on-wall bounce back schemes, are derived in terms of the hydrodynamic variables and relaxation rates. The results reveal several important differences in the expression of hidden errors between the two bounce back schemes. The analysis also points to a correction for the on-wall bounce back scheme when the external force is present. A set of six simulations of the turbulent channel flow, using the two bounce back schemes and three grid resolutions, are, then, performed to demonstrate that the magnitude of the hidden errors can significantly affect the simulated turbulence statistics, the local consistency with the Navier–Stokes equations, and the numerical stability.

Funder

National Natural Science Foundation of China

Guangdong Provincial Key Laboratory of Turbulence Research and Applications

Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications

Shenzhen Science and Technology Program

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3