Flow Modulation by Finite-Size Neutrally Buoyant Particles in a Turbulent Channel Flow

Author:

Wang Lian-Ping1,Peng Cheng1,Guo Zhaoli2,Yu Zhaosheng3

Affiliation:

1. Department of Mechanical Engineering, University of Delaware, Newark, DE 19716-3140 e-mail:

2. National Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China e-mail:

3. Department of Mechanics, Zhejiang University, Hangzhou 310027, China e-mail:

Abstract

A fully mesoscopic, multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is developed to perform particle-resolved direct numerical simulation (DNS) of wall-bounded turbulent particle-laden flows. The fluid–solid particle interfaces are treated as sharp interfaces with no-slip and no-penetration conditions. The force and torque acting on a solid particle are computed by a local Galilean-invariant momentum exchange method. The first objective of the paper is to demonstrate that the approach yields accurate results for both single-phase and particle-laden turbulent channel flows, by comparing the LBM results to the published benchmark results and a full-macroscopic finite-difference direct-forcing (FDDF) approach. The second objective is to study turbulence modulations by finite-size solid particles in a turbulent channel flow and to demonstrate the effects of particle size. Neutrally buoyant particles with diameters 10% and 5% the channel width and a volume fraction of about 7% are considered. We found that the mean flow speed was reduced due to the presence of the solid particles, but the local phase-averaged flow dissipation was increased. The effects of finite particle size are reflected in the level and location of flow modulation, as well as in the volume fraction distribution and particle slip velocity near the wall.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3