Study on stability of cavity in metal–organic chemical vapor deposition calculation based on neural network method

Author:

Li Jian1ORCID,Qin Chao2ORCID,Wang Jie3ORCID,Wang Gang3ORCID

Affiliation:

1. School of AI-Guangdong and Taiwan, Foshan University, Foshan 528225, People's Republic of China

2. Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China

3. School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510000, China

Abstract

The computational fluid dynamics (CFD) method is widely used to study the process parameters and internal flow states of reactor chambers based on metal–organic chemical vapor deposition (MOCVD) to guide film growth. Currently, several machine learning models have been used in CFD studies, and the prediction accuracy of such models is positively correlated with the amount of data. Thus, two-dimensional (2D) models are used in CFD studies, while three-dimensional (3D) models contain more information and have been used more widely. Herein, neural network (NN) models for target regions based on a 3D MOCVD reactor are proposed and applied to flow-stability studies using the MOCVD reactor chamber. NN models are used to predict the cavity stability curve, and the range of process parameters can be controlled by the characteristics of the curve. NN prediction results have higher accuracy, after the model is established, which considerably reduces the work of CFD numerical simulation and lays a foundation for MOCVD equipment design and process debugging.

Funder

Guangdong Provincial Pearl River Talents Program

National Natural Science Foundation of China-Guangdong Joint Fund

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3