Unsteady cavitation dynamics and pressure statistical analysis of a hydrofoil using the compressible cavitation model

Author:

Zhao XiaotaoORCID,Wang ZiyangORCID,Bai XiaoruiORCID,Cheng HuaiyuORCID,Ji BinORCID

Abstract

A compressible cavitation model is developed in this paper, in which the bubble wall velocity is obtained by solving the compressible Rayleigh–Plesset (R–P) equation. Additionally, vapor compressibility is also included during evaporation/condensation to correct the phase change rate. The predicted results around a National Advisory Committee for Aeronautics (NACA) 66 (mod) hydrofoil are compared with the available experimental data, and a satisfied agreement is obtained. By (mod), we mean the NACA 66 hydrofoil modified by Brockett [“Minimum pressure envelopes for modified NACA-66 sections with NACA a = 0.8 camber and BuShips type I and type II sections,” Technical Report No. 1780 (David Taylor Model Basin Washington DC Hydromechanics Lab, 1966)] and Valentine [“The effect of nose radius on the cavitation-inception characteristics of two-dimensional hydrofoils,” Technical Report No. 3813 (Naval Ship Research and Development Center, 1974)]. Several crucial flow properties, e.g., fluid compressibility, cavitation evolution features, and pressure statistical characteristics, are studied in detail. The results suggest that the developed compressible cavitation model is better suited for predicting the collapse behavior of cavitation. Moreover, our work captures the liquid re-entrant jet and bubbly shock waves well and reveals that these two mechanisms jointly dominate the cavity shedding dynamics. Shock-induced pressure pulses play a more important role in flow features, with a maximum amplitude exceeding 200 kPa, significantly larger than the pressure pulse caused by liquid re-entrant jets. Finally, the statistical analysis indicates that the pulsating pressure presents non-Gaussian nature with positive skewness, and shock waves exhibit high-frequency and high-energy characteristics.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3