Determining the density and spatial descriptors of atomic scale defects of 2H–WSe2 with ensemble deep learning

Author:

Smalley Darian12ORCID,Lough Stephanie D.12ORCID,Holtzman Luke N.3ORCID,Holbrook Madisen4ORCID,Hone James C.4,Barmak Katayun3ORCID,Ishigami Masahiro12

Affiliation:

1. Department of Physics, UCF 1 , 4111 Libra Drive, PS430, Orlando, Florida 32816, USA

2. NanoScience Technology Center, UCF 2 , 12424 Research Parkway, Suite 400, Orlando, Florida 32826, USA

3. Department of Applied Physics and Applied Mathematics, Columbia University 3 , 500 W. 120th Street, Suite 200, New York, New York 10027, USA

4. Department of Mechanical Engineering, Columbia University 4 , 500 W. 120th Street #200, New York, New York 10027, USA

Abstract

We have demonstrated atomic-scale defect characterization in scanning tunneling microscopy images of single crystal tungsten diselenide using an ensemble of U-Net-like convolutional neural networks. Coordinates, counts, densities, and spatial extents were determined from almost 16 000 defect detections, leading to the rapid identification of defect types and their densities. Our results show that analysis aided by machine learning can be used to rapidly determine the quality of transition metal dichalcogenides and provide much needed quantitative input, which may improve the synthesis process.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3