Anisotropic quasi-static permittivity of rare-earth scandate single crystals measured by terahertz spectroscopy

Author:

Taherian Afrouz1ORCID,Cooke Jacqueline1ORCID,Schubert Mathias23ORCID,Sensale-Rodriguez Berardi1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, The University of Utah 1 , Salt Lake City, Utah 84112, USA

2. Department of Electrical and Computer Engineering, University of Nebraska 2 , Lincoln, Nebraska 68588, USA

3. NanoLund and Solid State Physics, Lund University 3 , Lund S-22100, Sweden

Abstract

We report the real-valued static and complex-valued quasi-static anisotropic permittivity parameters of rare-earth scandate orthorhombic single crystal GdScO3 (GSO), TbScO3 (TSO), and DyScO3 (DSO). Employing continuous-wave terahertz spectroscopy (0.2–1 THz), the complex permittivity was extracted using an anisotropic ambient-film-ambient model. Data obtained from multiple samples of the same oxides and different surface cuts were analyzed simultaneously. The zero-frequency limit of the modeled data indicates that at room temperature the real part of the dielectric tensor components for GSO are ɛa = 22.7, ɛb = 19.3, and ɛc = 28.1; for DSO, ɛa = 20.3, ɛb = 17.4, and ɛc = 31.1; and for TSO, ɛa = 21.6, ɛb = 18.1, and ɛc = 30.3, with a, b, and c crystallographic axes constituting the principal directions for the permittivity tensor. These results are in excellent agreement with expectations from theoretical computations and with scarcely available data from previous experimental studies. Furthermore, our results evidence a noticeable attenuation, which increases with frequency, and are very significant especially at the higher frequency end of the measurement and along the c-direction in all samples. We suggest the attenuation is most likely caused by the onset of absorption due to long-wavelength active optical phonon modes. These results are important for electronic and potential sub-terahertz applications (e.g., quarter-wave plate) benefiting from the large index contrast along different directions in these materials.

Funder

Air Force Office of Scientific Research

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3