Comparison of aluminum nitride thin films prepared by magnetron sputter epitaxy in nitrogen and ammonia atmosphere

Author:

Sundarapandian Balasubramanian1ORCID,Tran Dat Q.2ORCID,Kirste Lutz1ORCID,Straňák Patrik1ORCID,Graff Andreas3,Prescher Mario1ORCID,Nair Akash1ORCID,Raghuwanshi Mohit1ORCID,Darakchieva Vanya24ORCID,Paskov Plamen P.2ORCID,Ambacher Oliver5ORCID

Affiliation:

1. Fraunhofer Institute for Applied Solid State Physics 1 , Tullastraße 72, 79108 Freiburg im Breisgau, Germany

2. Center for III-Nitride Technology (C3NiT-Janzén,) and Department of Physics, Chemistry and Biology, Linköping University 2 , 581 83 Linköping, Sweden

3. Fraunhofer Institute for Microstructure of Materials and Systems 3 , Walter-Hülse Straße 1, D-06120 Halle, Germany

4. NanoLund and Solid State Physics, Lund University 4 , 22100 Lund, Sweden

5. Institute for Sustainable Systems Engineering (INATECH), University of Freiburg 5 , Emmy-Noether-Straße 2, 79110 Freiburg im Breisgau, Germany

Abstract

Wurtzite-type aluminum nitride (AlN) thin films exhibiting high thermal conductivity, large grain size, and low surface roughness are desired for both bulk acoustic wave and surface acoustic wave resonators. In this work, we use ammonia (NH3) assisted reactive sputter deposition of AlN to significantly improve these properties. The study shows a systematic change in the structural, thermal, and morphological properties of AlN grown in nitrogen (N2) and N2 + NH3 atmosphere. The study demonstrates that NH3 assisted AlN sputtering facilitates 2D growth. In addition, the study presents a growth model relating the 2D growth to improve the mobility of aluminum (Al) and nitrogen (N) ad-atoms in NH3 atmosphere. Consequently, the thermal conductivity and roughness improve by ≈76%, and ≈35%, while the grain size increases by ≈78%.

Funder

Bundesministerium für Verkehr, Innovation und Technologie

Bundesministerium für Digitalisierung und Wirtschaftsstandort

VINNOVA

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3