The electron cyclotron drift instability: A comparison of particle-in-cell and continuum Vlasov simulations

Author:

Tavassoli Arash1ORCID,Papahn Zadeh Mina1ORCID,Smolyakov Andrei1ORCID,Shoucri Magdi1ORCID,Spiteri Raymond J.2ORCID

Affiliation:

1. Department of Physics and Engineering Physics, University of Saskatchewan 1 , Saskatoon, Saskatchewan S7N 5E2, Canada

2. Department of Computer Science, University of Saskatchewan 2 , Saskatoon, Saskatchewan S7N 5C9, Canada

Abstract

The linear and nonlinear characteristics of the electron cyclotron drift instability (ECDI) have been studied through the particle-in-cell (PIC) and continuum Vlasov simulation methods in connection with the effects of the azimuthal length (in the E ×B direction) on the simulations. Simulation results for a long azimuthal length (17.82 cm =627 vd/ωce, where ωce is the electron cyclotron frequency and vd is the E × B drift of the electrons) are reported, for which a high resolution is achieved in Fourier space. For simulations with a long azimuthal length, the linear growth rates of the PIC simulations show a considerable discrepancy with the theory, whereas the linear growth rate of the Vlasov simulations remains close to the theory. In the nonlinear regime, the inverse cascade is shown in both PIC and Vlasov simulations with a sufficiently large azimuthal length. In simulations with a short azimuthal length, however, the inverse cascade is barely observed. Instead, the PIC simulations with a short azimuthal length (0.5625 cm =19.8 vd/ωce) show an essentially continuous nonlinear dispersion, similar to what is predicted by the ion-sound turbulence theory. It is shown that, in the PIC and Vlasov simulations, the inverse cascade coincides with the formation and merging of electron structures in phase space. This process, however, terminates differently in the PIC simulations compared with the Vlasov simulations. Larger amplitudes of ECDI fluctuations are observed in the PIC simulations compared with the Vlasov simulations, leading to an intensified electron heating and anomalous current. This suggests that the statistical noise of PIC simulations might contribute to the extreme electron heating that has been observed in previous studies.

Funder

Natural Sciences and Engineering Research Council of Canada

Air Force Office of Scientific Research

Compute Canada

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3