Physics and instabilities of low-temperature E×B plasmas for spacecraft propulsion and other applications

Author:

Boeuf Jean-Pierre1ORCID,Smolyakov Andrei2ORCID

Affiliation:

1. LAPLACE, Université de Toulouse, CNRS, INPT, UPS 1 , 118 Route de Narbonne, 31062 Toulouse, France

2. Department of Physics and Engineering Physics, University of Saskatchewan 2 , Saskatoon, Saskatchewan S7N 5E2, Canada

Abstract

Low-temperature E×B plasmas are used in various applications, such as Hall thrusters for satellite propulsion, ion sources and magnetron discharges for plasma processing, and negative ion sources for neutral beam injection in fusion. The plasmas in these devices are partially magnetized, meaning that the electrons are strongly magnetized while the ions are not. They are subject to various micro- and macro-instabilities that differ significantly from instabilities in fusion plasmas. These instabilities are often triggered by the large difference in electron and ion drift velocities in the E×B direction. The possibility of maintaining a large electric field in the quasineutral plasma of Hall thrusters despite anomalous electron transport, or the presence of strong double layers associated with the azimuthal rotation of plasma structures (“rotating spokes”) in magnetron discharges and Hall thrusters are examples of the very challenging and exciting physics of E×B devices. The turbulence and instabilities present in E×B plasma devices constitute a major obstacle to the quantitative description of these devices and to the development of predictive codes and are the subject of intense research efforts. In this tutorial, we discuss the key aspects of the physics of low-temperature partially magnetized E×B plasmas, as well as recent advances made through simulations, theory, and experiments in our understanding of the various types of instabilities (such as gradient-drift/Simon-Hoh and lower hybrid instabilities, rotating ionization waves, electron cyclotron drift instability, modified two-stream instability, etc.) that occur in these plasmas.

Funder

Centre National d'Etudes Spatiales

RTRA STAE Foundation

Natural Sciences and Engineering Research Council of Canada

Air Force Office of Scientific Research

Digital Research Alliance of Canada

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3