Superoxide intermediate in the oxygen reduction on a zinc hydroxide model corrosion product

Author:

Nayak Simantini12ORCID,Biedermann P. Ulrich1ORCID,Erbe Andreas13ORCID

Affiliation:

1. Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany

2. Department of Materials Chemistry, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India

3. Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Abstract

The inhibition of the electrochemical oxygen reduction reaction (ORR) by zinc corrosion products plays an important role in the corrosion protection of galvanized steel. Hence, the electrocatalytic mechanism of the ORR on electrodeposited zinc hydroxide-based model corrosion products was investigated by in situ and operando attenuated total reflection infrared (ATR-IR) spectroscopy, supplemented by density functional theory (DFT) calculations. Model corrosion products containing flake-like crystalline Zn5(NO3)2(OH)8 were cathodically electrodeposited on germanium(100) electrodes from a zinc nitrate precursor electrolyte. Substantial amounts of the films are non-crystalline, and their surfaces predominantly consist of zinc oxide and hydroxide species, as evidenced by x-ray photoelectron spectroscopy. ATR-IR spectra show a peak at 1180 cm−1 during cathodic currents in O2-saturated NaClO4 solution. This peak is assigned to a surface-bound superoxide, the only ORR intermediate detected. Absorbance from the intermediate increases with increasing cathodic current, indicating an increase in surface concentration of superoxide intermediates at larger ORR current densities. The zinc hydroxide ages in the experiments, most likely by a transformation into zinc oxide, consistent with the observed decrease in absorbance over time of the OH bending mode of zinc hydroxide at 1380 cm−1. This aging is a time-dependent chemical process, implying that pure chemical aging is important in actual corrosion products as well. DFT calculations of adsorbed superoxide yield a Zn–O bond length similar to the bond length in Zn–O, thus enhancing superoxide interaction with undercoordinated tetrahedral Zn2+ sites on the surface. Thus, such active sites catalyze the first reduction step in the ORR.

Funder

IMPRS Surmat

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3