Insight into synergetic effect of bulk doping and boundary engineering on conductivity of NASICON electrolytes for solid-state Na batteries

Author:

Li Wenkai1,Zhao Ning1ORCID,Bi Zhijie1,Guo Xiangxin1ORCID

Affiliation:

1. College of Physics, Qingdao University, 266071 Qingdao, China

Abstract

Na superionic conductor-type Na1+xZr2SixP3-xO12 (0 ≤ x ≤ 3, NZSPO) is considered as one of the most promising solid electrolytes for solid-state sodium batteries, while its relatively low ionic conductivity of 10−4 S cm−1 requires improvement for application. In this study, a synergetic strategy is applied to improve the ionic conductivity of NZSPO, i.e., by combining bulk doping and grain-boundary engineering. Hf4+ is selected as the substitution for Zr4+ to stabilize the highly conducting rhombohedral phase. La2O3 is added as a sintering aid to promote the ion transport along the grain boundaries with Na3La(PO4)2 formed therein. The optimized Na3Zr1.8Hf0.2Si2PO12-Na3La(PO4)2 (NZHSPO-NLPO) ceramic electrolytes show a high relative density of 98.8% and the superior ionic conductivity of 1.66 × 10−3 S cm−1 at 30 °C. The Na symmetric batteries display the stable plating/stripping cycling over 500 h at 0.1 mA cm−2 and 0.05 mAh cm−2. With ionic liquid as a wetting agent at cathode sides and PEO as an intermediate layer at anode sides, the NZHSPO-NLPO-based Na batteries with Na3V2(PO4)3 cathodes exhibit the discharge capacity of 109.9 mAh g−1 and capacity retention of 92.7% at 0.1 and 30 °C for 50 cycles. It is proved that the simultaneous optimization of bulk and grain boundaries is powerful for increasing the ionic conductivity of ceramic solid electrolytes.

Funder

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Project of Qingdao Leading Talents in Entrepreneurship and Innovation

Key Technology Research and Development Program of Shandong

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3