Bifurcations of mixed-mode oscillations in three-timescale systems: An extended prototypical example

Author:

Kaklamanos P.1ORCID,Popović N.1ORCID,Kristiansen K. U.2

Affiliation:

1. School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, James Clerk Maxwell Building, King’s Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom

2. Department of Applied Mathematics and Computer Science, Technical University of Denmark, Asmussens Allé, Building 303B, 2800 Kgs. Lyngby, Denmark

Abstract

We study a class of multi-parameter three-dimensional systems of ordinary differential equations that exhibit dynamics on three distinct timescales. We apply geometric singular perturbation theory to explore the dependence of the geometry of these systems on their parameters, with a focus on mixed-mode oscillations (MMOs) and their bifurcations. In particular, we uncover a novel geometric mechanism that encodes the transition from MMOs with single epochs of small-amplitude oscillations (SAOs) to those with double-epoch SAOs; the former feature SAOs or pseudo-plateau bursting either “below” or “above” in their time series, while in the latter, SAOs or pseudo-plateau bursting occur both “below” and “above.” We identify a relatively simple prototypical three-timescale system that realizes our mechanism, featuring a one-dimensional S-shaped 2-critical manifold that is embedded into a two-dimensional S-shaped critical manifold in a symmetric fashion. We show that the Koper model from chemical kinetics is merely a particular realization of that prototypical system for a specific choice of parameters; in particular, we explain the robust occurrence of mixed-mode dynamics with double epochs of SAOs therein. Finally, we argue that our geometric mechanism can elucidate the mixed-mode dynamics of more complicated systems with a similar underlying geometry, such as a three-dimensional, three-timescale reduction of the Hodgkin–Huxley equations from mathematical neuroscience.

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3