1. Brøns, M., Krupa, M., Wechselberger, M.: Mixed mode oscillations due to the generalized canard phenomenon. In: Bifurcation Theory and Spatio-Temporal Pattern Formation, vol. 49 of Fields Institute Communications, pp. 39–63. American Mathematical Society, Providence, RI, (2006)
2. Curtu, R., Rubin, J.: Interaction of canard and singular Hopf mechanisms in a neural model. SIAM J. Appl. Dyn. Syst. 10(4), 1443–1479 (2011)
3. Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H.M., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54(2), 211–288 (2012)
4. Dumortier, F.: Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, singular perturbations. In: Bifurcations and Periodic Orbits of Vector Fields (Montreal, PQ, 1992), vol. 408 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 19–73. Kluwer Academic Publisher, Dordrecht (1993)
5. Dumortier, F., Roussarie, R.: Canard cycles and center manifolds. Mem. Am. Math. Soc. 121(577), 1–100 (1996) (With an appendix by Cheng Zhi Li)