Affiliation:
1. Department of Electrical, Electronic and Information Engineering, Kansai University, Suita 564-8680, Japan
2. Graduate School of Electrical and Information Engineering, Shonan Institute of Technology, Fujisawa 251-8511, Japan
Abstract
In previous works [Inaba & Kousaka, 2020; Inaba & Tsubone, 2020; Inaba et al., 2023], significant bifurcation structures referred to as nested Mixed-Mode Oscillations (MMOs) were found to be present in forced Bonhoeffer–van der Pol (BVP) oscillators. It is well known that unnested Mixed-Mode Oscillation-Incrementing Bifurcations (MMOIBs) can generate [Formula: see text] oscillations (i.e. [Formula: see text] followed by [Formula: see text] repeated [Formula: see text] times) for successive values of [Formula: see text], where [Formula: see text] and [Formula: see text] are adjacent fundamental simple MMOs, e.g. [Formula: see text] and [Formula: see text], where [Formula: see text] is an integer. Furthermore, it has been confirmed that MMOIBs can generate nested MMOs. Let two adjacent unnested MMOIB-generated MMOs be denoted [Formula: see text] and [Formula: see text]. Then, singly nested MMOIBs can generate [Formula: see text] for successive values of [Formula: see text], i.e. [Formula: see text] followed by [Formula: see text] repeated [Formula: see text] times, between the [Formula: see text]- and [Formula: see text]-generating regions. The sequential generation of singly nested MMOs has been investigated in detail in previous work [Ito et al., 2021]. Nested MMOs can, however, be at least doubly nested. In this study, we investigate doubly nested MMOs considering a constrained nonautonomous BVP oscillator containing an idealized diode. Based on the observed dynamics of this system, Poincaré return maps are rigorously constructed in one dimension. Therefore, we can solve the successive saddle-node bifurcations using a nested (i.e. double-loop) bisection method. We track 60 successive doubly nested MMOIBs and we do not rule out the possibility that the 58 scaling constants corresponding to the MMOIB intervals converge to unity. We note that because we solve the bifurcation equation avoiding the use of a method that requires the careful selection of the initial conditions (e.g. the Newton–Raphson), we can accurately track the saddle-node bifurcations without missing any doubly nested MMO sequences.
Publisher
World Scientific Pub Co Pte Ltd
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献