Piezoelectric acoustic wave characteristics of Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal substrate: A comparative study with and without SiO2 overlay

Author:

Zhang Qiaozhen1ORCID,Du Rufan1,Li Baichuan1,Liu Huiling2,Zhao Xiangyong2,Chen Ziyun34ORCID,Luo Haosu4ORCID

Affiliation:

1. College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China

2. Key Laboratory of Optoelectronic Material and Device, Department of Physics, Shanghai Normal University, Shanghai 200234, China

3. Department of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

4. R&D Center of Synthetic Crystals, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China

Abstract

This paper investigates the excitation and propagation characteristics of a piezoelectric acoustic wave propagating in a rotated Y-cut X-propagating Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) relaxor-based ferroelectric single crystal substrate. Numerical simulations were performed to evaluate the acoustic wave properties by FEM software COMSOL. For comparison, two types of structures are taken into consideration: one is the traditional metal electrode/YX-PIN-PMN-PT and the other is silicon dioxide (SiO2) overlay/metal electrode/YX-PIN-PMN-PT substrate. It is shown that shear-horizontal (SH)-type piezoelectric boundary acoustic waves (PBAW) exist in the SiO2 overlay/metal electrode/YX-PIN-PMN-PT substrate and offer a fairly large electromechanical coupling factor K2 of 30%. Compared to a surface acoustic wave excited in the metal electrode/YX-PIN-PMN-PT substrate, enlarged phase velocity and significantly improved quality factor (∼3500) are simultaneously obtained for SH-type PBAW, which are promising for electromechanical transducer applications with high performance.

Funder

National Natural Science Youth Foundation of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3