Partially Etched Piezoelectric Film Filled with SiO2 Structure Applied to A1 Mode Resonators for Transverse Modes Suppression

Author:

Yu Zhenyi1,Guo Yu1,Fu Sulei2,Li Baichuan3,Liu Peisen2ORCID,Zhang Shuai1,Sun Zongqin1

Affiliation:

1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China

2. Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

3. College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China

Abstract

With the arrival of the Fifth Generation (5G) communication era, there has been an urgent demand for acoustic filters with a high frequency and ultrawide bandwidth used in radio-frequency (RF) front-ends filtering and signal processing. First-order antisymmetric (A1) lamb mode resonators based on LiNbO3 film have attracted wide attention due to their scalable, high operating frequency and large electromechanical coupling coefficients (K2), making them promising candidates for sub-6 GHz wideband filters. However, A1 mode resonators suffer from the occurrence of transverse modes, which should be addressed to make these devices suitable for applications. In this work, theoretical analysis is performed by finite element method (FEM), and the admittance characteristics of an A1 mode resonator and displacement of transverse modes near the resonant frequency (fr) are investigated. We propose a novel Dielectric-Embedded Piston Mode (DEPM) structure, achieved by partially etching a piezoelectric film filled with SiO2, which can almost suppress the transverse modes between the resonant frequency (fr) and anti-resonant frequency (fa) when applied on ZY-cut LiNbO3-based A1 mode resonators. This indicates that compared with Broadband Piston Mode (BPM), Filled-broadband Piston Mode (FPM) and standard structures, the DEPM structure is superior. Furthermore, the design parameters of the resonator are optimized by adjusting the width, depth and filled materials in the etched window of the DEPM structure to obtain a better suppression of transverse modes. The optimized A1 mode resonator using a DEPM structure exhibits a transverse-free response with a high fr of 3.22 GHz and a large K2 of ~30%, which promotes the application of A1 mode devices for use in 5G RF front-ends.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3