Affiliation:
1. Lehrstuhl für Theoretische Chemie, Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg , Nägelsbachstraße 25, 91052 Erlangen, Germany
Abstract
We outline a coarse-grained model of epoxy resins (bisphenol-F-diglycidyl-ether/3,5-diethyltoluene-2,4-diamine) to describe elastic and plastic deformation, cavitation, and fracture at the μm scale. For this, molecular scale simulation data collected from quantum and molecular mechanics studies are coarsened into an effective interaction potential featuring a single type of beads that mimic 100 nm scale building blocks of the material. Our model allows bridging the time–length scale problem toward experimental tensile testing, thus effectively reproducing the deformation and fracture characteristics observed for strain rates of 10−1 to 10−5 s−1. This paves the way to analyzing viscoelastic deformation, plastic behavior, and yielding characteristics by means of “post-atomistic” simulation models that retain the molecular mechanics of the underlying epoxy resin at length scales of 0.1–10 µm.
Funder
Deutsche Forschungsgemeinschaft
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献