Investigation into the coherence of flame intensity oscillations in a model multi-element rocket combustor using complex networks

Author:

Kasthuri Praveen1ORCID,Krishnan Abin2ORCID,Gejji Rohan3ORCID,Anderson William3ORCID,Marwan Norbert4ORCID,Kurths Jürgen45ORCID,Sujith R. I.1ORCID

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, India

2. Department of Mechanical Engineering, School of Engineering, Cochin University of Science and Technology, Cochin 682022, India

3. School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907, USA

4. Potsdam Institute for Climate Impact Research, Potsdam 14473, Germany

5. Department of Physics, Humboldt University, Berlin 12489, Germany

Abstract

Capturing the complex spatiotemporal flame dynamics inside a rocket combustor is essential to validate high-fidelity simulations for developing high-performance rocket engines. Utilizing tools from a complex network theory, we construct positively and negatively correlated weighted networks from methylidyne (CH*) chemiluminescence intensity oscillations for different dynamical states observed during the transition to thermoacoustic instability (TAI) in a subscale multi-element rocket combustor. We find that the distribution of network measures quantitatively captures the extent of coherence in the flame dynamics. We discover that regions with highly correlated flame intensity oscillations tend to connect with other regions exhibiting highly correlated flame intensity oscillations. This phenomenon, known as assortative mixing, leads to a core group (a cluster) in the flow-field that acts as a “reservoir” for coherent flame intensity oscillations. Spatiotemporal features described in this study can be used to understand the self-excited flame response during the transition to TAI and validate high-fidelity simulations essential for developing high-performance rocket engines.

Funder

Air Force Office of Scientific Research

Indian Institute of Technology Madras

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3