Detached eddy simulation of the interaction between acoustics and flame dynamics during the transition before and after longitudinal thermoacoustic instability in a multi-element liquid rocket engine

Author:

Liu YuanzheORCID,Wang ZhuopuORCID,Ao WenORCID,Guan YuORCID,Liu PeijinORCID

Abstract

In this study, we present the first numerical evidence of multiple bifurcation processes occurring in a multi-element model liquid rocket engine before and after the longitudinal thermoacoustic instability regime, as we vary the oxidizer inlet temperature within the range of 400–1400 K. To accurately capture the non-premixed turbulent combustion process, a comprehensive three-dimensional compressible detached eddy algorithm was employed, incorporating a two-step methane/oxygen chemical reaction kinetic mechanism based on OpenFOAM. After validating the numerical framework and achieving grid independence, we focus on (1) investigating the transition routes of system dynamics and (2) analyzing the spatiotemporal evolution of multiple jet combustion flow fields during the multi-bifurcation process. Our results indicate that the system dynamics undergoes two successive bifurcating processes. During the first bifurcation (400 K ≤ T ≤ 800 K), the system dynamics transitions into a full period-1 oscillation through intermittency. In the second bifurcation (1200 K ≤ T ≤ 1400 K), the system shifts from a limit cycle state back to a combustion noise state. The complex coupling mechanism between injectors is further elucidated through frequency spectrum results of radial velocity and temperature near the initial shear layer in the wakes of different injectors, especially the symmetry-breaking response between different injector jets. The analysis of snapshots and flame index also reveals the spatiotemporal evolution of combustion flow fields, specifically highlighting vortex dynamics, heat release, and combustion modes that potentially contribute to thermoacoustic instability.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3