Electron doping of SmNiO3 via interfacial charge transfer: A first-principles study

Author:

Weng Yakui1ORCID,Long Fei1,Chen Yinan1,Miao Fengyu1,Li Jie2,Cheng Jie1ORCID,Li Xing’ao1

Affiliation:

1. School of Science, Nanjing University of Posts and Telecommunications 1 , Nanjing 210023, China

2. Grünberg Research Centre, Nanjing University of Posts and Telecommunications 2 , Nanjing 210023, China

Abstract

SmNiO3 is a representative quantum material exhibiting the antidoping behavior, where the conductivity of the material is reduced rather than increased by electron doping. Recent experimental and theoretical works have demonstrated a phase transition of SmNiO3 with large conductance changes via chemical methods. However, the effect of electron doping via interfacial charge transfer in SmNiO3 is much less studied. In this work, the first-principles density functional theory (DFT)+U method is employed to investigate the SmNiO3/YTiO3 superlattice, in which the YTiO3 layer acts as the electron donor. Compared with the chemical doping in SmNiO3, several interesting physical phenomena have been predicted in SmNiO3/YTiO3 superlattices due to the lattice and electronic reconstructions. First, at a doping concentration of 1e− per Ni, i.e., (SmNiO3)1/(YTiO3)1 superlattice, all Ni3+ are converted to Ni2+, resulting in a Mott-insulating phase, similar to the chemical doping in the pristine material. Interestingly, such a Mott gap can be efficiently modulated by tuning the stacking orientation. Second, at a doping concentration of 12e− per Ni, i.e., [001]-orientated (SmNiO3)2/(YTiO3)1 superlattice, the electronic structure associated with charge ordering depends on the concrete magnetic order, giving rise to magnetism-dependent electronic behavior. In addition, as the doping concentration further decreases (i.e., a doping concentration of 13e−/Ni), a metallic state is predicted in a [001]-orientated (SmNiO3)3/(YTiO3)1 superlattice, which is quite different from the case of chemical doping.

Funder

Natural Science Foundation of Nanjing University of Posts and Telecommunications

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3