Affiliation:
1. Department of Physics, University of Tennessee (UT), Knoxville, TN 37996–1200, USA. Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6393, USA.
Abstract
A wide variety of experimental results and theoretical investigations in recent years have convincingly demonstrated that several transition metal oxides and other materials have dominant states that are not spatially homogeneous. This occurs in cases in which several physical interactions—spin, charge, lattice, and/or orbital—are simultaneously active. This phenomenon causes interesting effects, such as colossal magnetoresistance, and it also appears crucial to understand the high-temperature superconductors. The spontaneous emergence of electronic nanometer-scale structures in transition metal oxides, and the existence of many competing states, are properties often associated with complex matter where nonlinearities dominate, such as soft materials and biological systems. This electronic complexity could have potential consequences for applications of correlated electronic materials, because not only charge (semiconducting electronic), or charge and spin (spintronics) are of relevance, but in addition the lattice and orbital degrees of freedom are active, leading to giant responses to small perturbations. Moreover, several metallic and insulating phases compete, increasing the potential for novel behavior.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
1748 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献