Insulator‐Transition‐Induced Degradation of Pyrochlore Ruthenates in Electrocatalytic Oxygen Evolution and Stabilization through Doping

Author:

Liu Tongtong12,Guo Hengyu12,Zhang Qingren12,Fujishige Masatsugu3,Endo Morinobu3,Zhang Zhengping12ORCID,Wang Feng12ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China

2. National Engineering Research Center for Fuel Cell and Hydrogen Source Technology Beijing University of Chemical Technology Beijing 100029 P. R. China

3. Research Initiative for Supra-Materials Shinshu University Nagano 380-8553 Japan

Abstract

AbstractRu‐based pyrochlores (e.g., Y2Ru2O7−δ) are promised to replace IrO2 in polymer electrolyte membrane (PEM) electrolyzers. It is significant to reveal the cliff attenuation on the oxygen evolution reaction (OER) performance of these pyrochlores. In this work, we monitor the structure changes and electrochemical behavior of Y2Ru2O7−δ over the OER process, and it is found that the reason of decisive OER inactivation is derived from an insulator transition occurred within Y2Ru2O7−δ due to its inner “perfecting” lattice induced by continuous atom rearrangement. Therefore, a stabilization strategy of the Ir‐substituted Y2Ru2O7−δ is proposed to alleviate this undesirable behavior. The double‐exchange interaction between Ru and Ir in [RuO6] and [IrO6] octahedra leads the charge redistribution with simultaneous spin configuration adjustment. The electronic state in newly formed octahedrons centered with Ru 4d3 (with the state of eg↑↑a1g eg0) and Ir 5d6 (eg↑↓↑↓a1g↑↓ eg0) relieves the uneven electron distributions in [RuO6] orbital. The attenuated Jahn–Teller effect alleviates atom rearrangement, represented as the mitigation of insulator transition, surface reconstruction, and metal dissolution. As results, the Ir‐substituted Y2Ru2O7−δ presents the greatly improved OER stability and PEM durability. This study unveils the OER degradation mechanism and stabilization strategy for material design of Ru‐based OER catalysts for electrochemical applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3