High-temperature dielectric with excellent capacitive performance enabled by rationally designed traps in blends

Author:

Zhao Zhonghua1ORCID,Zhang Shuo1,Li Mingru1ORCID,Feng Yang1ORCID,Yang Liuqing1ORCID,Li Shengtao1ORCID

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University , Xi’an, Shaanxi 710049, China

Abstract

Polymer dielectrics with excellent capacitive performance are urgently needed in advanced electrical and electronic systems. However, due to the dramatic increase in the conduction loss, the energy density and efficiency of polymers degrade severely at elevated temperatures, limiting their application in harsh environments up to 150 °C. Herein, an all-organic polyurea (PU)/polyetherimide (PEI) blend film is designed to prepare high-temperature polymer dielectric. It is found that carrier traps can be introduced by blending, and the hydrogen bond between PU and PEI increases the trap depth, leading to suppressed leakage current and enhanced breakdown strength, thus improving the energy storage performance. PU/30%PEI exhibits a high discharged energy density of ∼3.74 J/cm3 with an efficiency higher than 90% at 150 °C, which is 78% and 70% higher than pristine PU and PEI, respectively. This work provides a facile strategy to improve the energy storage performance of polymer dielectrics by introducing deep traps through blending.

Funder

National Natural Science Foundation of China

Fundamental Research Funds of Xi'an Jiaotong University

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3