A molecular design strategy to develop all‐organic crosslinked polyetherimide film with high discharged energy density at 150°C

Author:

Li Chenyang1ORCID,Yuan Li1ORCID,Liang Guozheng1ORCID,Gu Aijuan1ORCID

Affiliation:

1. State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China

Abstract

AbstractMiniaturization and lightweight of power systems urgently ask for polymer dielectrics with high discharged energy density at 150°C. Herein, a molecular design strategy is built to prepare new crosslinkable polyetherimide films (PEIDx, x is the molar ratio of dianhydride to amines) through simultaneously improving the polarization degree and reducing the residual polarization. Thermal, mechanical, and dielectric properties of PEIDx improve as x increases. PEID0.92 shows the best integrated performances, especially its discharged energy density (5.46 J cm−3, at 10 Hz and 454 MV m−1) is higher than those of reported polymer dielectrics with discharged energy storage at 150°C, and its charge–discharge efficiency is 80.14%. The outstanding energy storage performance of PEID0.92 is attributed to its unique molecular structure. Specifically, the use of nonplanar and low‐alkaline aliphatic cyclic diamine effectively improves the polarization degree of macromolecules; while the crosslinking of alkynyl groups limits the macromolecular movement, thus ensuring high heat resistance and low residual polarization.

Funder

National Natural Science Foundation of China

Key Laboratory of Advanced Functional Materials of Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3