Broadband terahertz polarization conversion using a planar toroidal metamaterial

Author:

Sarkar Rakesh1ORCID,Bhattacharya Angana1ORCID,Punjal Ajinkya2ORCID,Prabhu Shriganesh S.2ORCID,Kumar Gagan1ORCID

Affiliation:

1. Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

2. Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Navy Nagar, Mumbai 400005, India

Abstract

The development of metamaterial-based photonic components has acquired a significant interest in technological developments at terahertz frequencies. The manipulation of the state of polarization is an important parameter in optical devices. In this study, we have investigated, both numerically and experimentally, a toroidal excitation-based metamaterial that is capable of converting terahertz from its linearly polarized state to an orthogonally polarized state over a broad spectrum. The meta-molecule unit of the proposed geometry is comprised of a pair of resonators connected to each other having a split gap in each arm. We have studied both the horizontal and vertical components of transmission for numerous in-plane rotations of the proposed geometry. A multipolar analysis confirms a significant contribution of the toroidal component. Polarization conversion of nearly 40% is observed over a broad spectrum of 1.19–2.5 THz. Such a broadband cross-polarization converter could have remarkable implications for the development of terahertz toroidal metamaterial devices.

Funder

Science and Engineering Research Board

Indian Department of Atomic Energy

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3