Polarization independent lattice-coupled terahertz toroidal excitation

Author:

Bhattacharya AnganaORCID,Singh Chouhan Bhagwat,Singh Rajan,Bhowmik Bhairov KORCID,Kumar Gagan

Abstract

Abstract The toroidal dipole excitation is important for metamaterial research because of its low-loss attribute. In this study, we demonstrate numerically and experimentally, a unique toroidal metasurface that modulates a broad resonance into a sharp mode, independent of the polarization of the incident terahertz (THz) radiation, by coupling the inherent toroidal dipole excitation to the lattice mode of the metasurface. The advantage of polarization independence enables the excitation of ‘lattice-coupled toroidal mode’ for both the orthogonally polarized states of the incident THz radiation in the metasurface. The interaction of the two resonances results in the enhancement of the quality factor of the metasurface at the point of resonance matching. The surface current profile as well as multipole analysis of scattered powers by electric, magnetic, and toroidal dipoles confirm the domineering effect of toroidal dipole excitation for both the polarization states of incident THz radiation. Such a lattice-matched toroidal excitation-based device has the potential to impact the development of polarization-independent THz components for ultrasensitive sensors, lattice-enhanced equipment, and slow light devices for light–matter interaction.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference39 articles.

1. Cutting-edge terahertz technology;Tonouchi;Nat. Photon.,2007

2. Terahertz topological photonics for on-chip communication;Yang;Nat. Photon.,2020

3. Negative refraction makes a perfect lens;Pendry;Phys. Rev. Lett.,2000

4. From metamaterials to metadevices;Zheludev;Nat. Mater.,2012

5. Graphene plasmonics for tunable terahertz metamaterials;Ju;Nat. Nanotechnol.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3