Engineering photoelectric conversion efficiency in two-dimensional ferroelectric Cs2PbI2Cl2/Sc2CO2 heterostructures

Author:

Nie Guozheng1ORCID,Zhong Fang1ORCID,Zhong Jun2ORCID,Zhu Huiping3ORCID,Zhao Yu-Qing1ORCID

Affiliation:

1. School of Physics and Electronics Science, Hunan University of Science and Technology, Hunan Provincial Key Laboratory of Intelligent Sensors and New Sensor Materials 1 , Xiangtan 411201, China

2. College of Materials Engineering, North China Institute of Aerospace Engineering 2 , Langfang 065000, People's Republic of China

3. Institute of Microelectronics and Key Laboratory of Science and Technology on Silicon Devices, Chinese Academy of Sciences 3 , Beijing 100029, China

Abstract

Properties of ferroelectric semiconductors have garnered significant research interest, particularly due to their non-volatile memory. Meanwhile, studies on the characteristics of two-dimensional (2D) ferroelectrics have appeared as a crucial topic in solar cells, i.e., bulk photovoltaic effects. In this work, we propose two heterostructures: Cs2PbI2Cl2/Sc2CO2-UP (CSUP) and Cs2PbI2Cl2/Sc2CO2-DOWN (CSDN) for solar cells, to examine their photoelectric properties by using first-principles. Our findings indicate that such two heterostructures may have both high exciton binding energies and strong optical absorption coefficients in the ultraviolet region, with the CSDN showing exceptional carrier mobility as well. Moreover, we explore their characteristics by means of modulations of electric fields and stresses. The results reveal that the transition of band alignment in the CSUP can be engineered from type-II to type-I under the control of the electric fields, which may significantly increase the power conversion efficiency in actual solar cells. Moreover, both may have good potential in the application of logic devices. All these outputs may imply that, by means of fine modulations on photoelectric properties, the Cs2PbI2Cl2/Sc2CO2 possess immense potential to become multifunctional devices in ultraviolet photodetectors, solar cells, and logic devices.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Hunan Provincial Education Department

National Key Research and Development Program of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3