Benchmarking energy consumption and latency for neuromorphic computing in condensed matter and particle physics

Author:

Kösters Dominique J.123ORCID,Kortman Bryan A.124ORCID,Boybat Irem3ORCID,Ferro Elena35ORCID,Dolas Sagar6,Ruiz de Austri Roberto7,Kwisthout Johan8,Hilgenkamp Hans19,Rasing Theo2,Riel Heike3,Sebastian Abu3,Caron Sascha410,Mentink Johan H.2ORCID

Affiliation:

1. Faculty of Science and Technology, University of Twente 1 , P.O. Box 217, 7500 AE Enschede, The Netherlands

2. Institute for Molecules and Materials, Radboud University 2 , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

3. IBM Research Europe-Zürich 3 , Säumerstrasse 4, 8803 Rüschlikon, Switzerland

4. Nikhef 4 , P.O. Box 41882, 1098 XG Amsterdam, The Netherlands

5. Eidgenössische Technische Hochschule Zürich, Department of Information Technology and Electrical Engineering 5 , Gloriastrasse 35, 8092 Zürich, Switzerland

6. SURF Cooperation, Innovation Team 6 , Moreelespark 48, 3511 EP Utrecht, The Netherlands

7. Instituto de Física Corpuscular, Parc Científic UV, University of Valencia-CSIC 7 , c/Catedrático José Beltrán 2, E-46980 Paterna, Spain

8. Donders Institute for Brain, Cognition and Behaviour, Radboud University 8 , P.O. Box 9104, 6500 HE Nijmegen, The Netherlands

9. MESA+ Institute for Nanotechnology, University of Twente 9 , P.O. Box 217, 7500 AE Enschede, The Netherlands

10. Institute for Mathematics, Astrophysics and Particle Physics, Radboud University 10 , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

Abstract

The massive use of artificial neural networks (ANNs), increasingly popular in many areas of scientific computing, rapidly increases the energy consumption of modern high-performance computing systems. An appealing and possibly more sustainable alternative is provided by novel neuromorphic paradigms, which directly implement ANNs in hardware. However, little is known about the actual benefits of running ANNs on neuromorphic hardware for use cases in scientific computing. Here, we present a methodology for measuring the energy cost and compute time for inference tasks with ANNs on conventional hardware. In addition, we have designed an architecture for these tasks and estimate the same metrics based on a state-of-the-art analog in-memory computing (AIMC) platform, one of the key paradigms in neuromorphic computing. Both methodologies are compared for a use case in quantum many-body physics in two-dimensional condensed matter systems and for anomaly detection at 40 MHz rates at the Large Hadron Collider in particle physics. We find that AIMC can achieve up to one order of magnitude shorter computation times than conventional hardware at an energy cost that is up to three orders of magnitude smaller. This suggests great potential for faster and more sustainable scientific computing with neuromorphic hardware.

Funder

Horizon Europe European Research Council

Horizon Europe European Innovation Council

Radboud Universiteit

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Ministerio de Ciencia e Innovación

Swiss State Secretariat for Education, Research and Innovation

Publisher

AIP Publishing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart pixel sensors: towards on-sensor filtering of pixel clusters with deep learning;Machine Learning: Science and Technology;2024-08-14

2. PETNet–Coincident Particle Event Detection using Spiking Neural Networks;2024 Neuro Inspired Computational Elements Conference (NICE);2024-04-23

3. On-Sensor Data Filtering using Neuromorphic Computing for High Energy Physics Experiments;Proceedings of the 2023 International Conference on Neuromorphic Systems;2023-08

4. Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems;ACS Nano;2023-06-29

5. Abisko: Deep codesign of an architecture for spiking neural networks using novel neuromorphic materials;The International Journal of High Performance Computing Applications;2023-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3