Importance of temperature dependence of interface traps in high-k metal gate stacks for silicon spin-qubit development

Author:

Raffel Y.1,Olivo R.1,Simon M.1ORCID,Vieler L.1ORCID,Hoffmann R.1ORCID,De S.1ORCID,Kämpfe T.1ORCID,Seidel K.1ORCID,Lederer M.1ORCID

Affiliation:

1. Fraunhofer Institute for Photonic Microsystems IPMS, Center Nanoelectronic Technologies CNT , An der Bartlake 5, 01109 Dresden, Germany

Abstract

While semiconductor-based spin qubits have demonstrated promising fidelities exceeding 99.9%, their coherence time is limited by the presence of charge noise. However, fast process optimization for reduced charge noise becomes challenging due to the time-consuming nature of cryogenic measurements. Hence, this work explores low frequency analysis methods to determine interface trap densities, their temperature dependence, and correlation with observed noise levels. The herein presented results provide evidence for strong temperature dependence of the interface trap density. Moreover, good agreement is observed between charge pumping and conductance-based methods. Finally, differences in temperature dependent trends of flicker noise are observed, indicating additional influences, which need to be considered for further device optimization.

Funder

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference23 articles.

1. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9;Nat. Nanotechnol.,2018

2. Dephasing of Si spin qubits due to charge noise;Appl. Phys. Lett.,2009

3. Comparison of analog and noise performance between buried channel versus surface devices in HKMG I/O devices,2021

4. toward long-coherence-time Si spin qubit: The origin of low-frequency noise in cryo-CMOS,2020

5. Materials for silicon quantum dots and their impact on electron spin qubits;Adv. Funct. Mater.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3