Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field

Author:

Reyes Raustin1ORCID,Nakazato Takaya1,Imaike Nobuaki1,Matsuda Kazuyasu1,Tsurumoto Kazuya1,Sekiguchi Yuhei2ORCID,Kosaka Hideo12ORCID

Affiliation:

1. Department of Physics, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan

2. Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan

Abstract

The symmetry of the space where a spin qubit resides plays an essential role in the manipulation of quantum entanglement, which governs the performance of quantum information systems. Application of a magnetic field, which is usually necessary for spin manipulation and readout, inevitably breaks the spatial symmetry to induce competition among quantization axes between internal and external fields, thus limiting the purity of the entanglement. If we could manipulate and readout entanglement under a zero magnetic field, we would be able to avoid the competition among quantization axes to achieve ideally high fidelity. We here demonstrate the complete Bell state measurement, which is a core element of quantum processing, of two carbon nuclear spins in the vicinity of a diamond nitrogen-vacancy center. The demonstration was made possible by holonomic entanglement manipulations based on the geometric phase with a polarized microwave under a zero magnetic field, where the quantization axis is uniquely defined by the hyperfine field. The demonstrated scheme allows high-fidelity entanglement processing even when magnetic fields cannot be applied to the integration of superconducting and spin qubits, thereby paving the way for building fault-tolerant distributed quantum computers and quantum repeater networks.

Funder

Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research

Japan Society for the Promotion of Science Grants-in-Aid for Scientific Rearch

Japan Science and Technology Agency CREST

JST Moonshot R&D

Ministry of Internal Affairs and Communications, Research and development for construction of a global quantum cryptography network

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3