Residual stress tuned magnetic properties of thick CoMnP/Cu multilayers

Author:

Chen Yu-Shan1,Lin Chiao-Chi1ORCID,Chin Tsung-Shune12,Chang Jen-Yuan (James)3ORCID,Sung Cheng-Kuo3

Affiliation:

1. Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan

2. High Entropy Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan

3. Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

Abstract

Electrodeposited hard magnetic thick films have vast applications in the microelectromechanical systems (MEMS). Yet the very large residual stresses (σr) built-up in monolayered thick magnetic films leads to cracks, dimensional changes and deteriorated magnetic properties. Here, we explored quantitatively magnetic properties of CoMnP/Cu multilayers tuned by σr, which in turn are varied by the inserted soft Cu interlayer and thickness of single CoMnP magnetic layers. The configuration of the multilayers is an alternating CoMnP/Cu on Cu-substrate. The thickness of Cu interlayer was 1.4 μm. We kept a sum of all magnetic layers in the multilayers at ∼20 μm to benchmark with a 19.4 μm monolayered CoMnP. The magnetic layers are 94 wt.% Co and possess highly textured (002) hexagonal close packed microstructures. We characterized the apparent crystallite stresses through sin2ψ method by X-ray diffractometer (XRD) and residual film stress by curvature method. The insertion of Cu interlayers effectively reduces σr by 23% through stacking with six single-layered CoMnP. The out-of-plane (OP) anisotropy is slightly reduced. While the maximum energy product in the in-plane (IP) direction can be significantly enhanced by 430% ∼ 690% with increasing the number of the CoMnP single layer in the multilayers. The magneto-elastic behaviors well explain the evolution of the total anisotropy energy of the mono- and multi-layers. By CoMnP/Cu configurations we successfully worked out a strategy to preserve prestigious OP performance while to enhance IP properties by 4 to 6 times to meet ever increasing challenges in MEMS applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3