Affiliation:
1. College of Water Conservancy and Hydropower Engineering, Hohai University 3 , Nanjing 210098, People’s Republic of China
2. College of Science and Technology (MEE Department), University of Rwanda 4 , Kigali 3900, Rwanda
Abstract
Traditional numerical simulation techniques, such as sliding mesh, dynamic mesh, and others, have many limitations in dealing with flow simulation with the large-scale movement of solid boundaries, which is the case for simulating the flow of complex-shaped hydraulic turbomachinery such as propellers, pumps, and turbines. The immersed boundary (IB) method provides a new approach to solve the above-mentioned limitations. Therefore, this study proposes a sharp-interface IB method based on the level-set function that is suitable for simulating the flow through turbomachinery with complex geometries. This method is applied to actual three-dimensional numerical simulations of high-Reynolds number propellers using an in-house computational fluid dynamics solver. The results show that the proposed method can provide comparatively accurate predictions of unsteady load coefficients within the propeller flow passage and capture the correct propeller wake characteristics as well as the interaction between the propeller wake and free surface. This study is aimed at providing a theoretical basis and engineering reference for the application of the IB method in engineering numerical simulations.
Funder
The National Natural Science Foundation of China
The National Natural Science Foundation of Jiangsu Province
The Postdoctoral Research Foundation of China
The Project on Excellent Post-graduate Dissertation of Hohai University
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献