Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump

Author:

Zhang Desheng1,Shi Weidong1,Pan Dazhi1,Dubuisson Michel2

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China e-mail:

2. Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands e-mail:

Abstract

The tip leakage vortex (TLV) cavitating flow in an axial flow pump was simulated based on an improved shear stress transport (SST) k-ω turbulence model and the homogeneous cavitation model. The generation and dynamics of the TLV cavitation throughout the blade cascades at different cavitation numbers were investigated by the numerical and experimental visualizations. The investigation results show that the corner vortex cavitation in the tip clearance is correlated with the reversed flow at the pressure side (PS) corner of blade, and TLV shear layer cavitation is caused by the interaction between the wall jet flow in the tip and the main flow in the impeller. The TLV cavitation patterns including TLV cavitation, tip corner vortex cavitation, shear layer cavitation, and blowing cavitation are merged into the unstable large-scale TLV cloud cavitation at critical cavitation conditions, which grows and collapses periodically near trailing edge (TE).

Publisher

ASME International

Subject

Mechanical Engineering

Reference33 articles.

1. Zwart, P. J., Gerber, A. G., and Belamri, T., 2004, “A Two-Phase Flow Model for Predicting Cavitation Dynamics,” Fifth International Conference on Multiphase Flow, Yokohama, Japan.

2. Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex;ASME J. Turbomach.,2001

3. Application of Signal Processing Techniques to the Detection of Tip Vortex Cavitation Noise in Marine Propeller;J. Hydrodyn.,2013

4. Spike-Type Compressor Stall Inception, Detection, and Control;Annu. Rev. Fluid Mech.,2010

5. Modeling and Computation of Cavitation in Vortical Flow;Int. J. Heat Fluid Flow,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3