Spatial and temporal evolution of laser plasma produced using a double-stream gas puff target

Author:

Bartnik Andrzej1ORCID,Jach Karol1,Świerczyński Robert1,Fok Tomasz1ORCID,Węgrzyński Łukasz1ORCID,Wachulak Przemysław1ORCID,Fiedorowicz Henryk1ORCID

Affiliation:

1. Institute of Optoelectronics, Military University of Technology , Warsaw, Poland

Abstract

Laser plasma produced using a double-stream gas puff target is an intense source of soft x-ray (SXR) and extreme ultraviolet (EUV) radiation, however, without the harmful emission of debris associated with a solid target. Debris-free laser plasma x-ray and EUV sources have been applied in many various applications, including metrology, imaging in a nanoscale, tomography, processing materials, emission and absorption spectroscopy, laboratory astrophysics and astrochemistry, radiobiology, and radiochemistry. In this work, the results of the experimental and theoretical studies on the spatial and temporal evolution of laser plasma produced as a result of irradiation of an argon/helium gas puff target with laser pulses of 1.3 or 6 ns time duration generated with an Nd:YAG laser system are presented. Imaging and spectral measurements of SXR emission from the plasma, created in the double-stream gas puff target, have been performed with the use of an x-ray streak camera. The analysis of the results of spectral measurements, supported by numerical simulations of plasma x-ray emission, allowed the estimation of the plasma electron temperature and its changes over time. Experimental data were compared with the results of theoretical studies performed using a computer model of plasma hydrodynamics. It was shown that plasma expansion is fast enough to reduce the plasma density in the laser focus area during the laser–plasma interaction.

Funder

National Science Center, Poland

Laserlab-Europe

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3