Influence of thermal stratification on the transport of polydispersed expiratory particles

Author:

Monka Aleksandra1ORCID,Fraga Bruño1ORCID,Soper David1ORCID,Hemida Hassan1ORCID

Affiliation:

1. School of Engineering, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom

Abstract

The fluid dynamics of expiratory events are complex, and understanding how indoor air conditions affect this and the spread of exhaled material is crucial to the prevention of large-scale spread of diseases. It is known that thermal stratification can trap contaminants in the lower levels of a room; however, there is a lack of studies that investigate the influence of vertical temperature gradients on the transport of expiratory particles at room scale. To this effect, we used Eulerian–Lagrangian large-eddy simulations to investigate the effect of thermal stratification on the transport of polydispersed expiratory particles during speaking in two different sized rooms. Cases with increasing temperature gradient were compared to an isothermal base case, and the influence of stratification on the exhalation jet and the particles suspended within is analyzed. The particle volume fraction was computed to quantify the spatiotemporal evolution of different particle size categories. Our results show that thermal stratification leads to an increased concentration of aerosols in the breathing zone and extends their forward reach. Aerosols up to a size threshold between 12 and 20 μm are locked up at different heights by stratification—beyond this threshold, they fall out continuously. In all cases, aerosols <20 μm traveled up to 4 m from the source, showing that physical distancing guidelines alone may be inadequate for controlling cross-infection risk for long-term exposures. Particles >60 μm are unaffected by stratification and do not follow a ballistic trajectory, falling out within 0.5 m of the infectious individual in all cases.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3