Electrical characteristics of normally off hydrogen-terminated diamond field effect transistors with lanthanum oxide gate dielectric

Author:

Su Jianing12,Chen Genqiang12ORCID,Wang Wei12ORCID,Shi Han12,He Shi12,Lv Xiaoyong12,Wang Yanfeng12,Zhang Minghui12ORCID,Wang Ruozheng12ORCID,Wang Hong-Xing12ORCID

Affiliation:

1. Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China

2. Institute of Wide Band Gap Semiconductors and Quantum Devices, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

Abstract

A normally off hydrogen-terminated diamond (H-diamond) metal-oxide-semiconductor field effect transistor (MOSFET) is realized by using lanthanum oxide (La2O3) gate dielectric. The threshold voltage is demonstrated to be −0.797 V, indicating that the La2O3-gated H-diamond MOSFET has normally off characteristics. The normally off mode could be greatly ascribed to the low work function of La2O3. Based on the capacitance–voltage (C–V) curves, the dielectric constant of La2O3 is calculated to be as high as 25.6. Moreover, the small hysteresis voltage extracted from the C–V curves exhibits low trapped charge density in the La2O3 layer. The maximum drain–source current, maximum transconductance, subthreshold swing, effective mobility, current on/off ratio, and sheet hole density of La2O3-gated MOSFET with a gate length of 2  μm are calculated to be −13.55 mA/mm, 4.37 mS/mm, 161 mV/dec, 202.2 cm2/V·s, 108, and 6.53 × 1012 cm−2, respectively. This work will significantly promote the development of normally off H-diamond MOSFET devices.

Funder

China Postdoctoral Science Foundation

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3