Effects of combustion on the near-wall turbulence and performance for supersonic hydrogen film cooling using large eddy simulation

Author:

Wei JianfeiORCID,Zhang SilongORCID,Zuo Jingying,Qin Jiang,Zhang Junlong,Bao Wen

Abstract

Supersonic film cooling using fuel on board is an effective way to simultaneously shield the huge heat and momentum flux transported from the mainstream to the wall in a scramjet engine. The self-ignition and combustion of the injected fuel film will significantly change the turbulent transport behavior in the boundary layer. To reveal the effects of the boundary layer combustion on the near-wall turbulence and wall fluxes, large eddy simulations (LES) of the Burrows–Kurkov supersonic combustion experiment using hydrogen as a film are performed based on the in-house solver scramjetFoam. The solver successfully captures the additional skin friction reduction phenomenon induced by the boundary layer combustion compared to other numerical works using LES in the public literature. The results reveal that further increased anisotropy of turbulence combined with the low-density region contributes to a remarkable suppression of turbulent transport processes in the wall-normal direction. The self-ignition point of the hydrogen film is found to oscillate back and forth in a span of 80 mm, which significantly enhances turbulence in the boundary layer. However, the increased turbulent fluctuating velocity is mainly concentrated in the streamwise direction, while the other two components are suppressed instead. The findings are also essential for improving engineering computations based on the Reynolds averaged simulation method.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3