Stress and heat flux via automatic differentiation

Author:

Langer Marcel F.123ORCID,Frank J. Thorben12ORCID,Knoop Florian4ORCID

Affiliation:

1. Machine Learning Group, Technische Universität Berlin 1 , 10587 Berlin, Germany

2. BIFOLD–Berlin Institute for the Foundations of Learning and Data 2 , Berlin, Germany

3. The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society and Humboldt University 3 , Berlin, Germany

4. Theoretical Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University 4 , SE-581 83 Linköping, Sweden

Abstract

Machine-learning potentials provide computationally efficient and accurate approximations of the Born–Oppenheimer potential energy surface. This potential determines many materials properties and simulation techniques usually require its gradients, in particular forces and stress for molecular dynamics, and heat flux for thermal transport properties. Recently developed potentials feature high body order and can include equivariant semi-local interactions through message-passing mechanisms. Due to their complex functional forms, they rely on automatic differentiation (AD), overcoming the need for manual implementations or finite-difference schemes to evaluate gradients. This study discusses how to use AD to efficiently obtain forces, stress, and heat flux for such potentials, and provides a model-independent implementation. The method is tested on the Lennard-Jones potential, and then applied to predict cohesive properties and thermal conductivity of tin selenide using an equivariant message-passing neural network potential.

Funder

Bundesministerium für Bildung und Forschung

Horizon 2020 Framework Programme

Swedish e-Science Research Centre

Swedish Research Council

Knut och Alice Wallenbergs Stiftelse

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3