Intelligent regulation of VO2-PDMS-driven radiative cooling

Author:

Liu Yang1,Tian Yanpei1,Liu Xiaojie1,Chen Fangqi1,Caratenuto Andrew1,Zheng Yi1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, Northeastern University , Boston, Massachusetts 02115, USA

Abstract

Passive radiative cooling, radiating energy from objects to the outer space through the Earth's atmospheric window, offers promising solutions for passive building cooling and renewable energy harvesting. However, static passive radiative cooling systems with a fixed thermal emissivity cannot automatically regulate emission in response to varying ambient temperature. Here, we propose an intelligent cooling system composed of nanoporous polyethylene, which acts as a solar reflector and a nanograting radiative cooler using the phase-transition material vanadium dioxide (VO2) and polydimethylsiloxane (PDMS). The top reflector enables the cooling system to reflect solar irradiation during the daytime, and the bottom cooler plays the role of switching radiative cooling in the spectrum band (8 μm < λ < 13 μm) due to the phase transition characteristic of VO2, contributing to the temperature of radiative cooler near a critical temperature. Meanwhile, continuous stretching of the material can achieve dynamic radiative cooling via deformation of the elastic PDMS substrate to realize different desired cooling temperatures. The proposed VO2-PDMS-driven radiative cooling system can not only intelligently switch between “on” and “off” radiative cooling modes but also adjust thermal comfort in its on mode in response to changes in the ambient temperature. This work has a great potential to be applied in the intelligent temperature regulation of buildings, vehicles, and utilities.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3