Bilateral passive thermal management for dynamical temperature regulation

Author:

Li Bingyao,Zeng Sicheng

Abstract

AbstractSpace heating and cooling of buildings account for $$\sim $$  30% of energy consumed globally. As a result, efforts to reduce the carbon footprint associated with building temperature regulation are crucial to achieving sustainability goals. Passive radiative cooling and sun heating are two promising innovations that can help reduce the energy consumption associated with building temperature regulation. However, these methods are constrained by factors such as climate zones and seasonal changes. In this work, we demonstrate numerically that bilateral photonic metamaterials enabled by vanadium dioxide (VO2) nanoparticles embedded into polyethylene nanogratings can achieve dynamically modulate solar absorptance at one side in winter and achieve radiative cooling on another side. In cold weather, the solar absorptance of this metastructure can change from 0.93 to 0.2 at a critical temperature when VO2 changes from a metallic to an insulating state. This metastructure consists of broadband transparent polyethylene (PE) gratings on the reflective silver (Ag) gratings with the same period and filling ratio. These gratings are deposited on top of the Polydimethylsiloxane (PDMS) thin film. The VO2 nanoparticles enable dynamic solar absorptance modulation for winter space heating, while the PDMS with strong infrared emittance derived from molecular vibrations over the atmospheric window for summer radiative cooling. Temperature response simulations validate that this bilateral design achieves   6 °C subambient temperature drop at noontime in the summer and stabilizes its temperature around 22 °C during the daytime in the winter. This passive dynamical thermal regulation technique can be deployed for energy-saving targets of buildings, vehicles, and greenhouses in areas with large temperature fluctuations.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3