Time-dependent dielectric breakdown of SiC-CMOS technology for harsh environments

Author:

Masunaga Masahiro1ORCID,Sasago Yoshitaka1ORCID,Mori Yuki1ORCID,Hisamoto Digh1ORCID

Affiliation:

1. Research and Development Group, Hitachi, Ltd ., Kokubunji, Tokyo 185-8601, Japan

Abstract

To estimate the failure time of silicon carbide (SiC) integrated circuits in harsh environments, the activation energy (Ea) and field acceleration factor of SiC n-channel MOS (nMOS) and p-channel MOS (pMOS) were measured using time-dependent dielectric breakdown testing at constant voltage stress in the range of 25–350 °C. Ea around 300 °C was 0.7 eV for nMOS and 0.66 eV for pMOS, which was about twice as high as that below 150 °C and did not differ greatly depending on the conductivity type. The gate dielectric breakdown mechanism shifted from the 1/E model to the E model as the temperature rose, and this is thought to have caused the Ea to change. The field acceleration factor in the E model at 300 °C was 2.7 and 2.3 cm/MV for nMOS and pMOS, respectively. The maximum operating electric fields of nMOS and pMOS for a 100-year lifetime are 6.8 and −7.2 MV/cm, which are over 25% lower than the fields at room temperature, mainly due to a shift in the dominant breakdown model. A more conservative failure time design will be required for SiC-ICs exposed to high temperatures.

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3