Controllable Nernst and Seebeck effects in graphene with O-shaped Kekulé structure

Author:

Zhang Peipei1ORCID,Wang Chao2ORCID,Li Yu-Xian1ORCID,Zhai Lixue1ORCID,Song Juntao1ORCID

Affiliation:

1. College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University 1 , Shijiazhuang, Hebei 050024, China

2. College of Physics, Shijiazhuang University 2 , Shijiazhuang, Hebei 050035, China

Abstract

The Nernst and Seebeck effects in graphene with uniform Kekulé lattice distortion have been studied using the tight-binding model combined with the nonequilibrium Green's function method. Numerical results of this work showed that due to the electron–hole symmetry, the Nernst coefficient is an even function of the Fermi energy, while the Seebeck coefficient is an odd function regardless of the magnetic field. The Nernst and Seebeck coefficients show peaks when the Fermi energy crosses the Landau levels at high magnetic fields or crosses the transverse subbands at the zero magnetic fields. The peak height can be very large when the Fermi energy approaches the Dirac point, the Seebeck coefficient can reach about 0.78 mV/K, and the Nernst coefficient can reach about 0.95 mV/K at the corresponding hopping energy modification parameter δ=0.03 and T=0.009t/kB≈288 K. When δ=0.08 and T=0.024t/kB≈766 K, the Seebeck coefficient (or Nernst coefficient) is still up to about 0.78 mV/K (or 0.95 mV/K). This suggests that tunable Seebeck and Nernst coefficients can be achieved because the bandgap is a function of the corresponding hopping energy modification parameter δ. Experimentally, δ can be modulated by changing the type and amount of atoms adsorbed on graphene. In strong magnetic fields, the Nernst coefficient does not depend on the chirality of the nanoribbon.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3