Asymmetric optical properties and bandgap shift of pre-strained flexible ZnO films

Author:

Liu Jiamin1ORCID,Zhou Zhikang1,Gu Honggang1ORCID,Zhu Jinlong1ORCID,Jiang Hao1ORCID,Liu Shiyuan12ORCID

Affiliation:

1. State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074, China

2. Optics Valley Laboratory 2 , Wuhan, Hubei 430074, China

Abstract

Strain engineering has been extensively explored to modulate the various intrinsic properties of flexible inorganic semiconductor films. However, experimental characterization of tensile and compressive strain-induced modulation of optoelectronic properties and their differences has not been easily implemented in flexible inorganic semiconductor films. Herein, the strain-dependent structural, optical, and optoelectronic properties of flexible ZnO films under pre-tensile and pre-compressive strains are systemically investigated by a Mueller matrix ellipsometry-based quantitative characterization method combined with x-ray diffraction and first-principle calculation. With extended prestress-driven deposition processing under bi-direction bending modes, pre-tensile and pre-compressive strains with symmetric magnitudes can be achieved in flexible ZnO films, which allows precise observation of the strain-driven asymmetric modulation of optoelectronic properties. When the applied prestrain varies approximately equally from 0% (baseline) to −0.99% (compression) and 1.07% (tensility), respectively, the relative changes for the c-axis lattice constant are 0.0133 and 0.0104 Å, respectively. Meanwhile, the dependence factors of the bandgap energy on the pre-compression and pre-tensile strains were determined as −0.0099 and −0.0156 eV/%, respectively, and the complex refractive index also presents an asymmetric varying trend. With the help of the strain–stress analysis and the first-principle calculation, the intriguing asymmetric strain-optical modulation effect could be attributed to the biaxial strain mechanism and the difference in the deformation potential between the two prestrain modes. These systematic investigation consequences are thus promising as a basis for the booming applications of the flexible inorganic semiconductor ensemble.

Funder

The National Natural Science Foundation of China

The Key Research and Development Plan of Hubei Province

Major Program of Hubei Province

The Innovation Project of Optics Valley Laboratory

Nationally Funded Postdoctoral Fellow Research Program

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3