Tuning friction to a superlubric state via in-plane straining

Author:

Zhang ShuaiORCID,Hou Yuan,Li Suzhi,Liu Luqi,Zhang ZhongORCID,Feng Xi-QiaoORCID,Li QunyangORCID

Abstract

Controlling, and in many cases minimizing, friction is a goal that has long been pursued in history. From the classic Amontons–Coulomb law to the recent nanoscale experiments, the steady-state friction is found to be an inherent property of a sliding interface, which typically cannot be altered on demand. In this work, we show that the friction on a graphene sheet can be tuned reversibly by simple mechanical straining. In particular, by applying a tensile strain (up to 0.60%), we are able to achieve a superlubric state (coefficient of friction nearly 0.001) on a suspended graphene. Our atomistic simulations together with atomically resolved friction images reveal that the in-plane strain effectively modulates the flexibility of graphene. Consequently, the local pinning capability of the contact interface is changed, resulting in the unusual strain-dependent frictional behavior. This work demonstrates that the deformability of atomic-scale structures can provide an additional channel of regulating the friction of contact interfaces involving configurationally flexible materials.

Funder

National Natural Science Foundation of China

ational Basic Research Program of China

National Science and Technology Major Project

State Key Laboratory of Tribology at Tsinghua University

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3