Seebeck, Peltier, and Soret effects: On different formalisms for transport equations in thermogalvanic cells

Author:

Kjelstrup Signe1ORCID,Kristiansen Kim R.1ORCID,Gunnarshaug Astrid F.1ORCID,Bedeaux Dick1ORCID

Affiliation:

1. PoreLab, Department of Chemistry, Norwegian University of Science and Technology, NTNU , N-7491 Trondheim, Norway

Abstract

Thermogalvanic cells convert waste heat directly to electric work. There is an abundance of waste heat in the world and thermogalvanic cells may be underused. We discuss theoretical tools that can help us understand and therefore improve on cell performance. One theory is able to describe all aspects of the energy conversion: nonequilibrium thermodynamics. We recommend to use the theory with operationally defined, independent variables, as others have done before. These describe well-defined experiments. Three invariance criteria serve as a basis for any description: of local electroneutrality, entropy production invariance, and emf’s independence of the frame of reference. Alternative formalisms, using different sets of variables, start with ionic or neutral components. We show that the heat flux is not the same in the two formalisms and derive a new relationship between the heat fluxes. The heat flux enters the definition of the Peltier coefficient and is essential for the understanding of the Peltier heat at the electrode interfaces and of the Seebeck coefficient of the cell. The Soret effect can occur independently of any Seebeck effect, but the Seebeck effect will be affected by the presence of a Soret effect. Common misunderstandings are pointed out. Peltier coefficients are needed for the interpretation and design of experiments.

Funder

Research Council of Norway

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3