On the different formalisms for the transport equations of thermoelectricity: A review

Author:

Manzanares José A.ORCID,Jokinen MiikkaORCID,Cervera JavierORCID

Abstract

AbstractResearchers in thermoelectricity with backgrounds in non-equilibrium thermodynamics, thermoelectric engineering or condensed-matter physics tend to use different choices of flux densities and generalized forces. These choices are seldom justified from either the dissipation function or the entropy production rate. Because thermoelectric phenomena are a primary focus in several emerging fields, particularly in recent energy-oriented developments, a review of the different formalisms employed is judged timely. A systematic classification of the transport equations is presented here. The requirements on valid transport equations imposed by the invariance of the entropy production are clearly explained. The effective Peltier and Seebeck coefficients, and the thermal conductivity, corresponding to the different choices of flux densities and generalized forces, are identified. Emphasis is made on illustrating the compatibility of apparently disparate formalisms. The advantages and drawbacks of these formalisms are discussed, especially from the point of view of the experimental determination of their thermoelectric coefficients.

Funder

Aalto Energy Efficiency Research Programme

Ministry of Economic Affairs and Competitiveness and FEDER

Generalitat Valenciana

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3