Efficient calculation of derivatives of integrals in a basis of non-separable Gaussians

Author:

Desmarais Jacques K.1ORCID,De Frenza Alessandro1ORCID,Erba Alessandro1ORCID

Affiliation:

1. Dipartimento di Chimica, Università di Torino , Via Giuria 5, 10125 Torino, Italy

Abstract

A computational procedure is developed for the efficient calculation of derivatives of integrals over non-separable Gaussian-type basis functions, used for the evaluation of gradients of the total energy in quantum-mechanical simulations. The approach, based on symbolic computation with computer algebra systems and automated generation of optimized subroutines, takes full advantage of sparsity and is here applied to first energy derivatives with respect to nuclear displacements and lattice parameters of molecules and materials. The implementation in the Crystal code is presented, and the considerably improved computational efficiency over the previous implementation is illustrated. For this purpose, three different tasks involving the use of analytical forces are considered: (i) geometry optimization; (ii) harmonic frequency calculation; and (iii) elastic tensor calculation. Three test case materials are selected as representatives of different classes: (i) a metallic 2D model of the Cu(111) surface; (ii) a wide-gap semiconductor ZnO crystal, with a wurtzite-type structure; and (iii) a porous metal-organic crystal, namely the ZIF-8 zinc-imidazolate framework. Finally, it is argued that the present symbolic approach is particularly amenable to generalizations, and its potential application to other derivatives is sketched.

Funder

National Science and Engineering Research Council, Canada

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3