Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system

Author:

Abstract

This communication deals with the general theory of obtaining numerical electronic wave functions for the stationary states of atoms and molecules. It is shown that by taking Gaussian functions, and functions derived from these by differentiation with respect to the parameters, complete systems of functions can be constructed appropriate to any molecular problem, and that all the necessary integrals can be explicitly evaluated. These can be used in connexion with the molecular orbital method, or localized bond method, or the general method of treating linear combinations of many Slater determinants by the variational procedure. This general method of obtaining a sequence of solutions converging to the accurate solution is examined. It is shown that the only obstacle to the evaluation of wave functions of any required degree of accuracy is the labour of computation. A modification of the general method applicable to atoms is discussed and considered to be extremely practicable.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference8 articles.

Cited by 1174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing the lanthanide pseudopotential datasets in terms of Slater-Condon spectral parameters;Computational Materials Science;2024-02

2. Adaptive finite differencing in high accuracy electronic structure calculations;npj Computational Materials;2024-01-20

3. Efficient GPU-Accelerated Bulk Evaluation of the Boys Function for Quantum Chemistry;2023 Eleventh International Symposium on Computing and Networking (CANDAR);2023-11-28

4. Economical Models for Electron Densities;The Journal of Physical Chemistry A;2023-10-31

5. Revisiting theoretical analysis of the electric dipole moment of Xe129;Physical Review A;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3